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SUMMARY

The Ser/Thr kinase CK2 (previously called casein ki-
nase 2) is composed of two catalytic chains (CK2a)
attached to a dimer of noncatalytic subunits (CK2b).
CK2 is involved in suppression of apoptosis, cell sur-
vival, and tumorigenesis. To investigate these activi-
ties and possibly affect them, selective CK2 inhibitors
are required. An often-used CK2 inhibitor is 5,6-di-
chloro-1-b-D-ribofuranosylbenzimidazole (DRB). In
a complex structure with human CK2a, DRB binds
to the canonical ATP cleft, but additionally it occupies
an allosteric site that can be alternatively filled by
glycerol. Inhibition kinetic studies corroborate the
dual binding mode of the inhibitor. Structural com-
parisons reveal a surprising conformational plasticity
of human CK2a around both DRB binding sites. After
local rearrangement, the allosteric site serves as
a CK2b interface. This opens the potential to con-
struct molecules interfering with the CK2a/CK2b

interaction.

INTRODUCTION

About 500 eukaryotic protein kinases (EPKs) are encoded in the

human genome (Manning et al., 2002). As key components of

signaling pathways, they are attractive as cell biological research

subjects and pharmaceutical targets. Therefore, selective small-

molecule EPK inhibitors are continually searched as valuable

research tools and as candidates for drug development (Knight

and Shokat, 2005).

Most EPK inhibitors address the canonical ATP cleft. Because

of its structural similarity in all EPKs, it is difficult to obtain selec-

tivity. Several strategies to overcome this problem exist (Knight

and Shokat, 2005). (1) Type I inhibitors bind to the ATP sites of

active EPKs and exploit structural differences in this region for

molecular recognition. (2) Type II inhibitors address the ATP sites

of inactive states that occur in the context of activity control of

EPKs and are structurally more diverse than the active ones

(Huse and Kuriyan, 2002). In particular, the so-called activation

segment is a key control element with significant conformational

plasticity. (3) Type III inhibitors form an increasing subset of EPK

inhibitors that occupy allosteric sites rather than the ATP cleft

(Knight and Shokat, 2005). (4) Finally, protein/protein interactions

rather than active sites are novel inhibitor targets (Wells and
Chemistry & Biology 15,
McClendon, 2007). As the function of EPKs in general requires

docking of various regulator and anchor proteins, this concept

is an attractive vision for interfering with EPKs.

An important EPK subgroup is the CMGC kinases (Manning

et al., 2002) with regulatory key enzymes such as the cyclin-

dependent kinases or MAP kinases. A remote member of the

CMGC kinases is CK2a (Niefind et al., 2007), which is the cata-

lytic subunit of protein kinase CK2 (previously called casein

kinase 2). The overexpression of CK2a is associated with lym-

phoma development (Seldin and Leder, 1995). Together with

a noncatalytic subunit (CK2b), CK2a forms a heterotetrameric

holoenzyme (Niefind et al., 2001; Figure 1). Unlike its CMGC rel-

atives, CK2a is neither phosphorylated nor structurally variable

at the activation segment. Rather, it is intramolecularly restrained

to keep an active conformation (Niefind et al., 2007), both in

monomeric form and within the CK2 holoenzyme. As CK2a

and the CK2 holoenzyme strongly differ in their substrate spec-

ificities (Guerra and Issinger, 1999), the CK2a/CK2b interaction

might be a target to affect the intracellular CK2 activity profile.

In the last several years, several type I CK2 inhibitors have

been devised (see Nie et al., 2007, and references therein). All

of them were either designed or subsequently structurally char-

acterized in complex with maize CK2a. The inherent assumption

of these studies—that maize and human CK2a are nearly identi-

cal at the ATP site—was challenged recently by the crystal struc-

ture of a human CK2a mutant (Yde et al., 2005) in which the

interdomain hinge—a part of the ATP binding site—deviated

distinctly from all known CK2a structures. This observation sug-

gested that cocrystal structures of inhibitors with genuine human

CK2a are worth being solved.

We therefore crystallized hsCK2a1–335, a C-terminal deletion

mutant of human CK2a that is fully active and capable of CK2

holoenzyme formation (Niefind et al., 2007), together with 5,6-di-

chloro-1-b-D-ribofuranosylbenzimidazole (DRB). DRB is a classi-

cal chemical probe for downgrading DNA transcription, and an

old and relatively selective CK2 inhibitor (Meggio et al., 1990).

Whether both phenomena are correlated is unclear. A 3D struc-

ture of DRB bound to CK2a or any other EPK is thus far not avail-

able from the Protein Data Bank (PDB).

RESULTS AND DISCUSSION

Dual Binding Mode of DRB at Human CK2a

We solved an hsCK2a1–335/DRB complex structure at 1.56 Å

resolution (Table 1). Surprisingly, two DRB molecules were found

attached to the enzyme (Figure 1). One of them (DRB1) occupies
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Figure 1. Dual DRB Binding to hsCK2a1–335

The hsCK2a1–335 molecule is drawn on the left-

hand side. The two bound DRB molecules are cov-

ered with Fo� Fc omit density (contour level 3.0 s)

calculated with the CCP4 programs (CCP4, 1994).

The CK2 holoenzyme (Niefind et al., 2001) was

superimposed with its first CK2a chain on the

hsCK2a1–335/DRB complex. Afterward, the CK2b

dimer (black and purple Ca trace) and the second

CK2a chain (green Ca trace) were drawn. The fig-

ure was prepared with BOBSCRIPT (Esnouf,

1997) and Raster3D (Merritt and Bacon, 1997).
the canonical ATP site (Figures 1 and 2A). The second one

(DRB2) is bound to a hydrophobic pocket at the outer surface

of the N-terminal b sheet (Figures 1 and 2B).
112 Chemistry & Biology 15, 111–117, February 2008 ª2008 Elsevier
To our knowledge, such an allosteric binding site has never

been reported for any inhibitor complex structure of maize

CK2a (Nie et al., 2007). Therefore, we confirmed our finding
Table 1. Data Collection and Refinement Statistics

hsCK2a1–335/DRB hsCK2a1–335/V66A/M163L/Glycerola

Data Collection

Space group P43212 P43212

Lattice constants a, b, c (Å) 71.5, 71.5, 125.8 71.4, 71.4, 126.4

Resolution (Å) (highest shell) 24.8�1.56 (1.62�1.56) 50.5�1.66 (1.71�1.66)

Rsym (%) 6.0 (60.9) 9.9 (44.7)

I /sI 11.7 (3.2) 31.5 (3.2)

Completeness (%) 99.9 (100.0) 98.0 (80.1)

Redundancy 7.6 (7.5) 8.7 (5.6)

Refinement

Resolution (Å) 24.8�1.56 50.5�1.66

Number of reflections 45,706 39,365

Rwork/Rfree (%) 14.4/19.9 14.3/20.6

Number of atoms

Protein 2861 2815

Ligand/ion 56 38

Water 338 284

B factors (Å2)

Protein 26.6 32.1

Ligand/ion 42.4 61.2

Water 36.4 44.5

Root-mean-square deviations

Bond lengths (Å) 0.017 0.011

Bond angles (�) 1.583 1.304

hsCK2a1–335 was prepared as described by Niefind et al. (2007). The final solution contained 11.3 mg/ml hsCK2a1–335 in 500 mM NaCl, 25 mM Tris/HCl

(pH 8.5). A 10 mM DRB solution was prepared. One percent (v/v) dioxane and some KOH were added to improve solubility. Equal volumes of the DRB and

the hsCK2a1–335 stock solution were mixed and incubated at 20�C for 30 min. For crystallization with the sitting-drop method, 2 ml of the hsCK2a1–335/

DRB solution was mixed with 1 ml of the reservoir solution composed of 1.5 M (NH4)2SO4, 0.2 M Na citrate, 0.2 M Na/K tartrate (pH 5.6). hsCK2a1–335/DRB

crystals formed at 20�C within 1 day. Cryo conditions were adjusted by replacing the reservoir solution by a 3.9 M (NH4)2SO4 solution and subsequent

equilibration. X-ray diffraction data were collected at beamline X12 of the EMBL outstation in Hamburg. The wavelength was 0.9 Å and the temperature

was 100K. The diffraction data were processed with the HKL package (Otwinowski and Minor, 1997). The structure was determined by molecular re-

placement using MOLREP and refined with REFMAC from CCP4 (1994). For the hsCK2a1–335/V66A/M163L/glycerol structure, the coordinates and

structure factors of PDB ID code 1YMI (Yde et al., 2005) were downloaded. After addition of glycerol, the structure was refined with REFMAC.
a Diffraction data set characteristics were adopted from Yde et al. (2005).
Ltd All rights reserved

www.ncbi.nlm.nih.gov


Chemistry & Biology

Human Protein Kinase CK2a/DRB Complex Structure
with an Fo� Fc omit map (Figure 1) and with an anomalous Four-

ier map based on an additional diffraction data set collected at

a wavelength of 2 Å at which the anomalous dispersion effect

of chlorine is increased. In fact, in this map, the chloro substitu-

ents of both DRB molecules together with several chloride ions

became visible (Figures 2 and 3).

Figure 2. The Two DRB Binding Sites

(A) Stereo picture (Esnouf, 1997; Merritt and Bacon,

1997) of DRB1 at the ATP site. The hsCK2a1–335/

DRB complex is covered with 2Fo � Fc electron

density (contour level 1.0 s) colored either in green

(protein, two water molecules, and one chloride

ion) or in blue (DRB). A part of the hsCK2a1–335/

AMPPNP complex (Niefind et al., 2007) is drawn

as black sticks. The red cages show anomalous

Fourier density (contour level 6 s).

(B) Stereo picture of the allosteric site occupied

by either DRB2 (blue 2Fo � Fc density) in the

hsCK2a1–335/DRB complex or by glycerol

(gray C atoms, orange 2Fo � Fc density) in the

hsCK2a1–335/V66A/M163L/glycerol complex. The

surrounding hydrophobic side chains (green

2Fo � Fc density) stem from the hsCK2a1–335/DRB

complex. All pieces of 2Fo � Fc electron density

are contoured at 1 s. The two chloro substituents

of DRB are covered by anomalous Fourier density

(red cage; contour level 3.5 s). The b4b5 loop

(black Ca trace and bonds) is drawn for compari-

son, also in its open form (CK2 holoenzyme; red

Ca trace and bonds).

(C) Hydrophobicity surface of the allosteric site of

the hsCK2a1–335/DRB complex and its environ-

ment drawn with BRAGI (Schomburg and Reichelt,

1988). Blue color, hydrophilic surface; red color,

hydrophobic patches. Parts of the CK2b chains in

the CK2 holoenzyme (Niefind et al., 2001) were

drawn after 3D fit.

The ATP-Competitive DRB Site
and Its Conformational
Plasticity
According to a well-established pharma-

cophore model of the ATP site of EPKs

(Traxler and Furet, 1999), the DRB1

benzimidazole group occupies the ‘‘ade-

nine region’’ yet without forming

H bonds to the interdomain hinge. The

adjacent hydrophobic region I that is

fairly small in CK2a as a result of a large

gatekeeper residue (Phe113) is filled with

two water molecules and a chloride ion

(Figure 2A).

The hydrophobic region II, however,

at the outer region of the ATP binding

cleft is occupied by the enzyme itself,

namely by Asn118 and other parts of

the hinge region (Figure 2A). Although

not involved in crystalline contacts, this

region adopts a ‘‘closed’’ conformation

and restricts the space at the ATP

binding site. In contrast, it is open and less space demanding

in the structure of hsCK2a1–335 in complex with adenylyl imido-

diphosphate (AMPPNP) (Niefind et al., 2007; Figure 2A). A par-

ticularly striking flag is Phe121: it points to the surface in the

hsCK2a1–335/AMPPNP structure but is buried in the

hsCK2a1–335/DRB complex.
Chemistry & Biology 15, 111–117, February 2008 ª2008 Elsevier Ltd All rights reserved 113
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To check the unique fold of this region, we performed local

similarity searches, submitting the corresponding coordinates

(Phe113–Phe121) from either the hsCK2a1–335/DRB structure

(closed conformation) or hsCK2a1–335/AMPPNP structure (Nie-

find et al., 2007; open conformation) to the SPASM server (Kley-

wegt, 1999). We accepted the default parameters except for the

atom selection, for which we used the options ‘‘CA atoms only’’

for the initial and ‘‘main-chain atoms only’’ for the finer screening.

From the two databases available, we selected the large one

(19,094 PDB ID codes). Whereas the open conformation oc-

curred in several EPK structures including those of maize

CK2a, the closed conformation provided just a single hit among

EPKs, namely the aforementioned mutant hsCK2a1–335/

Val66Ala/Met163Leu (Yde et al., 2005). This particular character-

istic of the closed conformation can possibly be exploited to

design novel selective type I CK2 inhibitors or to improve the se-

lectivity of existing ones (Nie et al., 2007). Moreover, this specific

conformation is not, as assumed earlier (Yde et al., 2005), a con-

sequence of mutations next to the hinge region. Rather, the two

distinct local conformations disclose a structural plasticity which

seems to be a special feature of human CK2a, as it is not re-

flected (so far) by the more numerous structures of maize CK2a.

The Allosteric DRB Site at the Interface to CK2b

In contrast to DRB1, the ribose moiety of DRB2 is partly disor-

dered but the flat benzimidazole group is clearly visible and plugs

in a pocket formed by several hydrophobic side chains of the

b sheet and the b4b5 loop (Figure 2B). The loop is bent toward

the sheet so that its hydrophobic tip residues (Pro104, Val105)

participate in the pocket wall.

The b4b5 loop adapts this closed conformation in all struc-

tures of monomeric human CK2a published so far (irrespective

of the crystal packing or the presence of a ligand). By contrast,

it is open in nearly all known structures of maize CK2a and in

the human CK2 holoenzyme (Niefind et al., 2001; Figure 2B),

where it is involved in the CK2a/CK2b interaction. Hence,

DRB2 and a closed b4b5 loop potentially interfere with the dock-

ing of CK2b to CK2a. Moreover, the loop provides a further

example of a subtle conformational plasticity of CK2a which is

evident from the human enzyme but not from the maize homolog.

Inhibition Kinetic and Calorimetric Studies
The coexistence of an ATP-competitive and an allosteric DRB

site should lead to a mixed inhibition of hsCK2a1–335 by DRB,

but to a pure competitive inhibition of the CK2 holoenzyme (un-

less DRB overcomes the blockade of the allosteric site by CK2b).

We confirmed these expectations by kinetic measurements with

hsCK2a1–335 and a CK2 holoenzyme variant (Figures 3A and 3B).

For comparison, we included maize CK2a in this analysis. In this

case, the inhibition type is predominantly competitive (Figure 3C);

however, a certain noncompetitive portion and thus a slight affin-

ity of DRB to an allosteric site is perceptible from the plots.

In a quantitative analysis of the human CK2/CK2a data, we

determined a competitive inhibition constant KIc of 29.2 mM

and a noncompetitive constant (KIu) of 39.7 mM. To derive KIu

from the relevant equation describing mixed inhibition, it is nec-

essary to know KIc. Therefore, we first determined KIc from the

measurement with the CK2 holoenzyme (Figure 3B) and then as-

sumed this value (29.2 mM) to be valid also for the ATP-compet-

itive part of the mixed inhibition of hsCK2a1–335 (Figure 3A).

The KIc and KIu values show that the affinity of DRB to the

allosteric site is lower than to the ATP site and not sufficient to

let DRB efficiently disturb the CK2 holoenzyme architecture.

We confirmed by gel-filtration studies (results not illustrated)

that DRB can neither induce the dissociation nor prevent the

association of the CK2 holoenzyme.

We could, however, detect a subtle impact of DRB on the CK2

holoenzyme architecture by differential scanning calorimetry.

The two holoenzyme components stabilize each other by asso-

ciation so that the melting temperature of hsCK2a1–335 increases

from 45.6�C to 56.2�C and that of hsCK2b1–208 from 58.5�C to

59.7�C (Figure 3D). Yet in the presence of DRB, the melting

points of the holoenzyme decrease to 54.3�C and 58.7�C,

respectively. We found this effect of DRB to be concentration

independent, which is plausible because DRB acts catalytically:

it binds to hsCK2a1–335 and supports the dissociation of the ho-

loenzyme, but afterward at this temperature range hsCK2a1–335

immediately unfolds so that DRB is released.

Bioinformatic Surface Analysis
Can DRB thus serve as a starting point to develop an antagonist

of the CK2a/CK2b interaction? To assess this question, we

submitted the protein part of the hsCK2a1–335/DRB structure to

the Mark-Us server (http://luna.bioc.columbia.edu/honiglab/

mark-us/) which includes the SCREEN method (Nayal and

Honig, 2006) to identify and characterize surface cavities. Six-

teen cavities were detected with the DRB1 site at the top and

the DRB2 site at position 3 ranked by the floor surface area

(areaDRB1 site = 786 Å2, areaDRB2 site = 113 Å2). In other attributes

identified as key criteria for ‘‘druggability’’ (Nayal and Honig,

2006), such as the average depth or maximum depth, the

DRB2 site achieved rank 2.

Figure 3. DRB Effect on Enzymatic Activity and Thermostability

(A–C) Inhibition kinetic with hsCK2a1–335 (A), a CK2 holoenzyme construct (B), and maize CK2a (C). Left side: Lineweaver-Burk plots; right side: s/v plots accord-

ing to Cornish-Bowden (1974). In the case of pure competitive inhibition, the s/v plot shows parallel lines like in (B).

(D) Differential scanning calorimetry (DSC) with hsCK2a1–335 (green), hsCK2b1–208 (blue), and the holoenzyme complex both without DRB (black) and in the pres-

ence of 30 mM DRB (red). The holoenzyme had the composition (hsCK2a1–335)2(hsCK2b1–208)2. The proteins were prepared as described by Niefind et al. (2001,

2007) and Boldyreff et al. (1993). The enzymatic activity was determined at 37�C with a coupled assay containing 100 mM Tris/HCl (pH 8.3), 20 mM MgCl2, 1 mM

phosphoenolpyruvate, 3 mg/ml casein, 5 mg/ml lactate dehydrogenase, 5 mg/ml pyruvate kinase, 0.2 mM NADH, and either 0.02 mg/ml hsCK2a1–335 (A), 0.034

mg/ml CK2 holoenzyme (B), or 0.02 mg/ml maize CK2a (C). In the case of the holoenzyme, 200 mM KCl was additionally present. The ATP and DRB concen-

trations were varied as indicated on the plots. The reaction was observed via NADH absorption at 340 nm. Each data point represents the average of three

experiments. The DSC curves (D) were measured with a MicroCal VP-DSC device. Each test solution contained 60 mM protein in 500 mM NaCl, 25 mM Tris/

HCl (pH 8.5). To obtain the red curve, 30 mM DRB and 2% dioxane were additionally present. As shown by control runs, dioxane at this concentration did not

affect the melting curves. An increase of the DRB concentration to 100 mM had no additional effect on the melting points. For each case, four independent curves

were measured. One representative example is drawn, but the melting points given in (D) are averages over all four experiments.
Chemistry & Biology 15, 111–117, February 2008 ª2008 Elsevier Ltd All rights reserved 115
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SCREEN assigned 11 residues to the DRB2 cavity. Some of

them (Gln36, Asp37, Asp103, Val112) do not touch the DRB2

ligand, that is, the cavity offers additional interaction possibilities

than used by DRB, thus opening a potential for optimization. This

conclusion is emphasized by the observation that the list of

cavity residues found computationally is not complete: first the

DRB2 ligand makes contacts (e.g., Gln40) not listed by SCREEN,

and a second visual inspection allows assigning Phe54—a main

contact residue to both chains of the CK2b dimer (Niefind et al.,

2001; Figure 2C)—and further residues to the allosteric cavity.

Given these limitations of the prediction method, it is encour-

aging that it computes for the DRB2 pocket the third largest

overall ‘‘druggability index’’ among the 16 cavities. With 0.14

(on a scale from 0 to 1), its value looks small relative to that of

the DRB1 site (0.90), but compared to a set of 1286 cavities

from 99 proteins (Nayal and Honig, 2006), it is among the top

100 and significantly above the noise level. Thus, targeting the

DRB2 site by small molecules appears to be a realistic option.

It is noteworthy that the druggability index of the DRB2 binding

region drops close to zero if the SCREEN method is applied to

either of the CK2a chains of the CK2 holoenzyme (Niefind et al.,

2001) in which the b4b5 loop is open. Therefore, to interfere with

the CK2a/CK2b interaction, it looks more promising to address

CK2a with a closed b4b5 loop—and to stabilize this loop in its

CK2 holoenzyme incompatible conformation (Figure 2B)—rather

than with an open b4b5 loop as proposed recently (Laudet et al.,

2007).

Glycerol at the Allosteric Site
Irrespective of the strategy, it would be desirable for ligand

design to know of further molecules binding to the DRB2 pocket.

We discovered such a molecule when we noticed that the

hsCK2a1–335/DRB crystals are isomorphous to those of the

mutant hsCK2a1–335/V66A/M163L (Yde et al., 2005). We there-

fore reinspected the hsCK2a1–335/V66A/M163L structure (Table

1) specifically at the allosteric site. In fact, we detected a piece

of electron density that fitted perfectly to a glycerol molecule (or-

ange density in Figure 2B). Because hsCK2a1–335/V66A/M163L

had been only temporarily in contact with glycerol during purifi-

cation, the protein must have captured the ligand and retained

it during crystallization (Yde et al., 2005).

Remarkably, the glycerol molecule overlaps largely with DRB2

(Figures 2B and 2C). The specificity of the DRB2 cavity is obvi-

ously low, and more chemically diverse ligands might possibly

be discovered. Finally, a molecule combining the individual li-

gand frames might be constructed which is able to compete

with CK2b and simultaneously unfold a stronger noncompetitive

inhibition effect than DRB.

SIGNIFICANCE

A dual binding mode of 5,6-dichloro-1-b-D-ribofuranosyl-

benzimidazole (DRB) to the catalytic subunit of human

protein kinase CK2 (CK2a) is described. One DRB molecule

occupies the canonical ATP cleft. It induces unexpected

structural adaptations of the hinge region linking the two

main kinase domains that might be pharmacologically im-

portant. The second DRB molecule targets the outer surface

of the N-terminal b sheet which normally forms the interface
116 Chemistry & Biology 15, 111–117, February 2008 ª2008 Elsevie
to the noncatalytic subunit CK2b. Consistently, we detected

with differential scanning calorimetry that DRB disturbs the

CK2a/CK2b contact. DRB might therefore serve as a lead

structure to develop small-molecule antagonists against

the CK2a/CK2b interaction (Wells and McClendon, 2007).
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